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surface 
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Chemistry Department, University of Ioannina, Ioannina, Greece 
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Abstract. We study the conformational properties of a polymer chain in the presence of 
both excluded volume interactions and interactions with a penetrable surface. The 
coexistence of two different kinds of interaction brings new features to the behaviour of 
the chain, beyond those coming from the two interactions acting independently. We follow 
an analysis which can find application to the study of problems with more than one 
interaction parameter. 

1. Introduction 

The probability distribution for the positions Ri ( i  = 1,2,. . . , N )  of the units of 
a non-ideal polymer chain, in the presence of the interacting penetrable surface 
represented by the x, y plane, can be written as 

zi is the distance of the ith unit from the surface and N is proportional to the length 
of the chain. P,{R,} stands for the probability distribution of the ideal non-interacting 

Figure 1. A polymer chain in the presence of an interacting penetrable plane. 
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chain while the two energy terms represent two different kinds of interaction: the 
interactions between the units and the surface (Kosmas 1981b) and  the excluded 
volume interactions (Yamakawa I97 1, Kosmas 198 la) respectively. The unit length 
of the polymer is taken equal to one for simplicity while the units of the adsorption 
parameter U, and the excluded volume parameter U, are chosen such that the exponen- 
tial term is dimensionless. 

The problem of adsorption from a penetrable surface (Hammersley et a1 1982) is 
useful for two reasons. 

( i )  It is similar to the case of a polymer chain interacting with an  impenetrable 
surface, which finds applications in the area of adsorption of polymers from liquid-solid 
interfaces (Kosmas 1981b, Freed 1983, Barber et a1 1978) and in the area of semi-infinite 
systems (Bray and Moore 1977, Lubensky and  Rubin 1975). 

(ii) It is the simplest example of the coexistence of two different interaction 
parameters and its study will help in the understanding of the behr?viour of systems 
with more than one kind of interaction. 

The general features of the two cases in which the two interactions act independently 
are as follows. When the interacting surface is absent, u,=O, and one parameter 
remains in the problem, the excluded volume parameter U,. In  this case there is a 
critical dimensionality d = 4 above which excluded volume effects are negligible. Two 
average quantities, the total number of configurations C and the number U of 
configurations returning to the origin have been found previously (Kosmas 1981a). At 
the dimensionality d = 4 - E ( E  small) and in the good solvent region where U, > 0 they 
are 

C = p c  exp(-2ueN)[1 +2u, ln  N + ( + U , E - ~ U ~ )  In2 NI 

- [ p o  e ~ p ( - 2 u , ) ] ~ N ' " :  = [ p o  exp( - ~ u ~ ) ] ~ N " ~ ,  (1.2a) 

U = [ p ~ e x p ( - 2 ~ , N ) / N ~ ' ~ ] [ I  -4ue1n N + ( - u , ~ + 2 4 u : )  In2 NI 

- { [pO exp( -2u,)]"/ Nd'2}N-4U: 

= [ p o  e ~ p ( - 2 U , ) ] ~ N - ' ~ / ~ ' - ' " / ~ )  U, = 0, U,* = E /  16. (1.26) 

The fixed point value U T  = € / I 6  describes the expanded state of the chain and it can 
be determined from second-order perturbation theory, equation ( 1.2a) or  ( 1.26) ; it is 
that value of U, which exponentiates the series (Wilson and Kogut 1974, Kosmas 198 1 a, 
1982). The exponents can then be determined to first order in E from first-order 
perturbation theory as quoted in equations ( 1 . 2 ~ )  and (1.26). Analogously, in the 
absence of excluded volume interactions (U, = 0) the parameter U, remains to determine 
the conformational properties of the chain (DiMarzio and McCrackin 1965). For the 
adsorption problem the critical dimensionality above which the adsorption effects are 
negligible is 2 and the two average properties for d = 2 - E  are given by: C = 
pr[I + u a ( 2 / ~ ) ( N F ' * -  1)I-l and CJ=(p~/Nd'2)[I+ua(2/~)(NF'Z-1)]-2 (Kosmas 
1981b). Beyond the ideal behaviour taken from this solution for u,=O, a non-ideal 
behaviour is observed for U, > 0, where the chain is desorbed and belongs mainly to 
the solution. Since N is a huge number, for u , > O  the two properties behave as 

and are characterised by the two critical exponents 
- ~ / 2  and - (d /2 )  - E respectively. The main features of the behaviour of the chain 
taken from the full solution can also be derived from second-order perturbation theory, 

C and CJ - p o " - l d / Z ) - c  
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according to which 

C=p,"[l -uU, ln  N-($EU,--:) In2 NI 
zt-LONN-": = pLoNN-'/2 ( 1 . 3 ~ )  

and  

U = ( p ~ / N d ~ 2 ) [ 1 - 2 ~ , I n  N + ( - ~ E u , + ~ u ~ ) ~ ~ *  NI 
- p o " - ( d / 2 ) - 2 u :  = p,o"- (d /2) -E U, = 0, uf = &/2. (1.3b) 

The exponentiation of these series, that is the equation of the half of the square of the 
first-order term with the second-order term, ;(-uf)' = -;mf + u f 2  which leads to the 
power-law dependence, determines two values of the adsorption parameter, U,* = 0 
and  uf = ~ / 2 .  These two different fixed points represent the two different possible 
states of the chain: the ideal state with U,* = 0 and the non-ideal desorbed state with 
uf = ~ / 2 .  The critical exponents can then be found as written in (1.30) and (1.36) 
and agree with the exponents taken from the full solution given above. 

The question raised is what happens when both interactions are present and  the 
purpose of the present work is to answer this problem. First of all we must find a 
formalism which can incorporate the two different critical dimensionalities 4 and 2. 
This is achieved by generalising the three-dimensional problem to a d-dimensional 
one with d = 4 - E. Two units of the chain at the position vectors R, and R, interact 
with a pseudopotential of the form u,Gd(R, - R,) .  At the same time the units interact 
with a generalised plane of dimensionality di, < d with a u,Gdi(r ,L)  potential where 
d, = d - d,, = 2 - E, and r,,  are the components of the position vectors R, in the subspace 
of dimensionality d,. Of course the model has to give the real three-dimensional 
problem represented by equation ( l . l ) ,  in the limit E -+ 1. It is explained in detail in 
the next section. A solution up  to second order in U, and U, will follow. Beyond the 
two solutions given in equations (1.2) and (1.3), representing the excluded volume 
and  the adsorption problems respectively, new features due to the coexistence of the 
two phenomena are expected to come out of this solution. 

2. Definitions 

In many problems in statistical physics there are critical dimensionalities d, above 
which the systems under study behave ideally. In such cases the analytic continuation 
of the dimensionality d to non-integer values is very helpful. The main reason for this 
is that the parameter E = d, - d can be treated as a small continuous variable and the 
employment of perturbation theory for the study of the system at d's where non-ideal 
behaviour occurs is possible. More than one generalisation of a three-dimensional 
problem to a d-dimensional one are possible, but all of them must yield the right 
three-dimensional problem in the limit d + 3. The generalisation which we use here 
is represented in figure 1. Although the definitions are conceivable for integer values 
of dimensionalities, in the end we treat the dimensionalities as continuous variables 
so that an &-expansion is possible. The dimensionality of the full space where the R, 
vectors belong is d. Excluded volume interactions of the form u,Sd(R ,  - R I )  occur 
between all pairs of polymeric units and this is to imitate the u,S3(R, - R,) term of 
equation (1.1). Two subspaces of the full space are important. One is a generalised 
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plane created from the dll < d axis; this subspace goes to the x, y plane in the limit 
d + 3. The second subspace is created from the rest d, = d - dll axis not included in 
the generalised plane. All these d, axes are perpendicular to the plane. In the limit 
d + 3 the second subspace goes to the z axis perpendicular to the x, y plane. A vector 
R in the d-dimensional full space consists of two components, the component rll 
parallel to the plane and the component r, perpendicular to the plane, R = rll + r,. 
The polymeric units at R, interact with the plane through a uaadl(rg,) pseudopotential 
which is to imitate the ua6(zi) term of (1.1). In what follows the dimensionality of 
the full space will be taken equal to d = 4 - E which in the limit E + 1 goes to the 
dimensionality three of the real problem. The dimensionality of the generalised plane 
is kept constant and equal to dll = 2. In the limit d + 3 the generalised plane goes to 
the x, y plane. The dimensionality is d, = 2 - E and in the limit d + 3( E + 1 )  it goes to 
d, + 1 and coincides with the dimensionality of the z axis. According to this generalisa- 
tion the probability distribution can be written as 

This probability incorporates the two different critical dimensionalties 2 and 4 and 
yields the probability, equation ( l . l ) ,  in the limit E + 1. We must mention through 
that equation (2.1) is not the only possible generalisation of (1.1). Another possibility 
for example is the generalisation to a d-dimensional problem in which the two subspaces 
are the ( d  - 1)-dimensional subspace and the rest z axis. In this case the two potentials 
are ueS4-‘(Ri - R,) and uaS(z,) respectively and again the problem is that represented 
by the probability distribution, equation ( l . l ) ,  in the limit d +3.  This picture has been 
used in previous studies (Bray and Moore 1977) but it cannot be of much help in our 
case because it cannot incorporate the two different critical dimensionalities 2 and 4 
as equation (2.1) does. 

the total number of walks 
In the following we will initially evaluate the following two quantities: 

N 

and the number of walks having their last unit at the origin 
N 

ddR,P{R,}6d(RN). 

Second-order calculations for the above two properties provide the values of the two 
parameters U, and U, at the fixed points, thus determining possible new fixed points 
for the problem. In order to check the theory, two more properties are evaluated up 
to second order. One is the number Cll of walks having their second ends at the plane 

(2.4) 

and the other is the number C, of walks with their ends on the axis perpendicular to 
the plane 

cl, = WO” I fi ddRiP{Ri}6d1(rNI), 
, = I  

J i = ~  
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3. Solution 

If we use for the ideal chain the Gaussian distribution 

N 

P,,(R,) = [d / (27712)]d~/ '  exp( -(d/212) (Ri - R+,Y), (3.1) 
I = I  

and absorb ( d / 2 ~ 1 ' ) " ' ~  factors in U ' S ,  second-order perturbation theory gives for C 
the diagrammatic expansion (Kosmas 198 la )  

~ - u , Q , - ~ u , U ~ + U ~ ~ . + ~ U :  

The first and second-order U, diagrams come from one and two a d - ( r , )  functions 
respectively, while the first and second-order U, diagrams come from one and two 
ad  ( R )  functions respectively. These diagrams correspond to the two independent cases 
(Kosmas 1981a, b) ;  their expressions and values are given in tables 1 and 2 respectively. 
The diagrams of the cross U,U, term are new and come from the product of a ad- ( r , )  
and a s d ( R )  function. Their expressions and values are also given in the tables. In 
the appendix a demonstration is given of the evaluation of the new diagrams. By 
means of the values of table 2 we take that 

C = p :  exp(-2u,N)[1-ua1n N+2u,In N-(u ,&/4) ln2  N + ( u e & / 2 ) l n 2  N 

+ uf In2 N - 6 u :  In' N - U,U, In2 NI.  (3.3) 

The two independent cases, ( 1 . 2 ~ )  and (1 .3a) ,  can be recovered from this general 
solution by putting U, = 0 or U, = 0 respectively. A point to notice is that the cross U,U, 
term is different from the term which the product of the two independent cases would 
give, providing the first evidence that some new effects come from the coexistence of 
two interaction parameters. In the two independent cases the fixed point value and 
the critical exponents are calculable from second-order perturbation theory by means 
of an exponentiation condition (Kosmas 198 1 a) .  When two interactions are present, 
two routes are possible for the evaluation of the values of the interaction parameters 
at the fixed points; either to go to higher-order perturbation theory where more than 
one condition wou'ld be required for the exponentiation of the series, or to study other 
properties, the exponentiation condition of which bring further relations between the 
values of the interaction parameters at the fixed points. Here we choose the second 
route. We have two interaction parameters so that two properties are sufficient. One 
is the total number of walks C and as a second one we pick up the number U of the 
walks returning to the origin. From (2.3) we take that 
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Using the values of the diagrams we take that 

U = [ p , ? e x p ( - 2 u , N ) / N 2 ] [ 1 + ( ~ / 2 )  In N-2ua1n  N-4ue1n  N + ( ~ ~ / 8 ) l n ’  N 

- ( 3 / 2 ) u , ~  In2 N - 3 u e &  In2 N+3u: ln2  N+24u:In2 N+10u,u , ln2  NI. 
( 3 . 5 )  

When U, = 0 or  U, = 0 the two independent cases are recovered and  again the cross 
u,u, term is different from the term which the product of the two independent cases 
would give, indicating cross effects. 

Results from the studies of problems of a single parameter show that various 
perturbation order terms yield the corresponding powers of In N, and that the expansion 
series sum up  to exponential functions of the form en I n  = N ”  at the fixed points. 
The critical exponents a can be determined from the value of the interaction parameter 
at the fixed points and characterise the several states at  which the chain can exist. For 
problems of two parameters the existence of series of In N’s again presages power 
laws. The various states of the chain are defined in terms of the values of two parameters 
and are characterised by different critical exponents. Varying the values of the interac- 
tion parameters the chain can go from one state to another. This picture is in accord 
with the Monte Carlo results of Eisenriegler et al (1982)  who determined different 
critical exponents for different values of the two interaction parameters. In the case 
of the present problem of two parameters, in order to determine the fixed points and  
the values ( u t ,  U T )  of the interaction parameters at these points, as well as for the 
evaluation of the critical exponents, an analysis similar to that of the single parameter 
problems can be followed. The series in In N’s in equations ( 3 . 3 )  and ( 3 . 5 )  sum u p  
to exponentials of the form e“”’ = N ”  for the specific values (U:, U,*) of the interaction 
parameters at the fixed points. In order for a series to fit into an  exponential form, 
half of the square of the first-order term must be equal to the second-order term. Two 
such exponentiation conditions are possible for the above two series which determine 
pairs of values (U:, U,*) of the two interaction parameters at the fixed points. They 
can be written in the following manner 

$(-U,* +2uT)’= -+U:& +&,*E + u , * ~ - ~ u , * ’  - u:u,* 
I[( ~ / 2 )  - 2 ~ :  -4~,*]’ = ( ~ ~ / 8 )  -$U:& - ~ u , * E  + 3 ~ , * ~ +  2 4 ~ , * ~ +  IOU,*UT 

( 3 2 ~ , * ’ - 2 u T ~ ) - ( 4 ~ $ ~ , * + 2 ~ , * ~ -  U,*&) = O  
( 3 2 u T 2 - 2 u , * ~ ) + ( 4 u , ” u ~ + 2 u , * ’ -  u , * E ) = ~ .  ( 3 . 6 )  

When U,* = 0 the excluded volume problem fixed points are obtained with U $  = 0, E /  16; 
when U,* = 0 the adsorption problem fixed points are obtained with U,* = 0, ~ / 2 .  The 
simultaneous solution of the two equations ( 3 . 6 )  yields further fixed points. From 
( 3 . 6 )  we obtain the relations 

3 2 ~ , * * - 2 ~ , * ~  = O ,  4u$u:+2u:2- U f E  = o .  (3 .7a,  b )  

The first equation is identical to the equation of the excluded volume problem without 
the presence of the plane, which means that the adsorption interactions d o  not influence 
the fixed point values 0 and E /  16 of the excluded volume parameter U,*. The same is 
not true for the values of U, at the fixed points. The second equation reveals that the 
values of U,* depend on the excluded volume interactions. For U,* = 0 the two values 
U,* = 0, ~ / 2  of the adsorption problem are obtained but for U,* = E /  16 a new value of 
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U,* is taken. All the possible fixed points are quoted in table 3. The critical exponents 
of C and U at the fixed points can be found from the expressions 

c - CL," exp(-2ue~)~-" : '2" : -  ~ y - 1  = 1 - U,* + 2 ~ , * ,  ( 3 . 8 ~ )  

U I p: ~ X ~ ( - ~ U , N ) N - ~ ~ ( ~ I ~ ) - " ~ - ~ ' ~  - NP,  p = - 2 + ( ~ / 2 ) - 2 ~ : - 4 ~ , * ,  
(3.8b) 

and they are also given in table 3. 

Table 3. Values of the interaction parameters at the fixed points and critical exponents. 

Adsorption t 
Interaction Ideal Adsorption Excluded volume excluded volume 

UT 0 0 & / I 6  e116 
U,* 0 E l 2  0 3818 
Y 1 I - ( E 1 - 2 )  1 +(~/8) 1 - ( c / 4 )  

P - 2 + ( E / 2 )  -2 - ( E / 2 )  - 2 + ( ~ / 4 )  -2 - ( E / 2 )  

Yll E 1 2  - E 1 2  €12 - & I 4  
YL 0 - € / 2  0 -3818 

A check on the theory will be provided from the evaluation of more properties. 
Cl, and C ,  have been chosen for his pupose. Their evaluation goes in a similar way. 
Starting from their definitions, (2.4) and (2.5), we take 

and 

(3.9b) 

By means of the values of the diagrams of table 2 we take that 

C,, = p," exp( -224, N ) (  1/ N)[ 1 + ( ~ / 2 )  In N - 224, In N + ( e2/8) In2 N - (3/2)ua& In2 N 

+3uiIn2 N+2u,ueln2 NI ( 3 . 1 0 ~ )  
C,=p.," exp(-2u,N)(l/N)[1-uaIn N-(1/4)uae In2 N + u ~ l n 2 N + u , u e l n 2  NI. 

(3.10b) 

The following interesting points come out of the analysis of (3.10). First, the exponenti- 
ation conditions for the two different properties CIl and C ,  give the same equation, 
(3.7b), yielding the same fixed points and providing in this way a positive check on 
the present theory. The meaning of the fixed points expressed by pairs of values 
(U:, U,*) does not depend on the specific property. This helps in the determination of 
the structure and the critical exponents of the macroscopic properties to order E from 
first-order perturbation theory once the fixed points have been found. The exponents 
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for example of Cll and C, can be determined from the relations 

Cll- p: exp( -2u ,N)NY~- '  = [p0 e x p ( - 2 ~ , ) ] ~ N ( " ~ ) - * ~ f ; - l ,  Yll= (E/2) -2u: 
(3.1 l a )  

C,-p: exp(-2u,N)NY-- '  = [ p o  e~p(-2u , ) ]~N-" : - ' ,  y =-U* a ,  (3.11b) 

and  are given in table 3. 

4. Conclusions 

Variation of the parameters of the physical problem such as temperature, solvent, 
polymer or substrate makes U, and U, vary. In this way they can reach the neighbour- 
hoods of the fixed points of table 3, where the corresponding macroscopic behaviour 
occurs. According to the classical description, the free energy of the system comes 
from the sum of the free energies of the two independent phenomena and this does 
not seem to be true for the present case. The existence of the new fixed point makes 
the behaviour of the system with two kinds of interactions different from the simple 
classical picture. The properties coming from the probability P { R , } ,  (2. l ) ,  which 
include to first order a U, In N term but not a U, In N term like Cli and C, have critical 
exponents which though independent of U,* d o  depend on the excluded volume 
interactions. Their dependence comes through the creation of the new fixed point 
(U:, U,*) = ( 3 ~ / 8 ,  s /16) ,  which alters the value U,* from that of the case of a chain 
without excluded volume interactions. The exponents for example of CI1 and C, take 
the values (yIl, yL) = ( ~ / 2 , 0 )  for the ideal chain, the values (yll, yl) = ( - e / 2 ,  - ~ / 2 )  
for the desorbed chain without excluded volume interactions but the values ( yll, yl) = 
( -e /4,  - 3 ~ / 8 )  for a desorbed chain with excluded volume interactions. In the case 
of properties which have a first order U, In N but not a U, In N term like the moments 
of the end-to-end probability distribution, the critical exponents depend only on U,* 

which means that adsorption effects d o  not influence the exponents of such properties. 
We are now going to compare where possible the results of the present work with 

those from other methods. The critical exponents of C - NY-' and  U - N P : y =  
1 - u,*+2uT and p = -2+ ( ~ / 2 )  - 2 ~ :  - 4 ~ :  (see (3.8)) are functions of both the 
excluded volume and the adsorption interaction parameters. The case with U, = 0, 
U, > 0 corresponds to an exactly soluble problem. It is also described by means of the 
state with U,* = 0 and U,* = e /2  of table 3. For an  ideal chain (U,  = 0) in a three- 
dimensional space, with a u,S(z, )  interaction, the exact solution yields on the one 
hand that C - N-'12 so that y3 = and that U - N-'d'2'-' so that p3=-$.  On the 
other hand the values of the two exponents from table 3 are y = 1 - ( e /2 )  so that for 
d = 3( E = 1 )  y3 = i and p = -2 - ( e / 2 )  so that p3 = -:. The two results coincide showing 
that, as far as the states with U, = 0 are concerned, the &-expansion predicts correctly 
the values of the critical exponents even for E = 1. The states with U, = 0 refer to the 
excluded volume problem of a polymer chain and they have been studied and  compared 
with the results from other methods previously (Kosmas 1981a). Of interest, for 
example, is that the exponent p agrees with what simple scaling predicts. The simple 
relation between the number U of the walks returning to the origin and the radius 
( R 2 )  of the chain U - ( R 2 ) - d ' 2  (de  Gennes 19791, permits the writing of the exponent 
P in terms of the exponent v = (4)  + ( E /  16) of the radius as p = -du. This relation can 
easily be checked from table 3 to be true for the states with U, = 0. For the states where 
both the interaction parameters are significant this simple scaling picture cannot be of 
much help. The results regarding these states can be compared with the results from 
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theories which study the effect of the adsorption parameter on the behaviour of 
non-ideal adsorbed chains. Previous methods studying a chain attached to an impen- 
etrable surface find that the change of U, from negative to positive values changes the 
state of the chain from an adsorbed two-dimensional chain to a desorbed three- 
dimensional chain (Whittington 1975). The critical exponent y in the absence of 
adsorption effects (U, = 0) decreases going from the two-dimensional chain with 
y211a=,, = 1 + ($) to a three-dimensional chain with y31%=o = 1 + ($) < y2llae0. Similar 
conclusions can be derived from the full dependence y = 1 + 214: - U: of the present 
work regarding a penetrable surface. We see that on increasing U:, y goes from large 
to small values like going from two-dimensional to three-dimensional behaviour. 
Similar conclusions can be derived from the study of the exponent p = 
-(d/2) -4uT -2u,*, which again decreases both on increasing U: as well as on increas- 
ing the dimensionality of the system; for U: = 0, it takes the value b211a=o = -$ for the 
two-dimensional chain and the value b31u,=0 = -: for the three-dimensional chain. Of 
much interest also is the comparison of the present results with the results from the 
Monte Carlo analysis of Eisenriegler et al. The value of the exponent y from Monte 
Carlo calculations is found to be equal to y = 1.44> 1 for U, = 0 and y = 0.69 < 1 for 
U,> 0. These values compare well with the values taken from y = 1 + 214: - u f ,  being 
y = 1 + (Q) > 1 for U,* = 0 and U,* = E /  16 (non-interacting expanded chain); and 
y = 1 - (a) < 1 for uf = 3 ~ / 8  and U: = E /  16 (desorbed expanded chain). 

Appendix 

We will demonstrate the evaluation of diagrams by describing the evaluation of the 
following new diagrams: Qcl, -Uc_, UU,,  and ac,. First-order diagrams are 
evaluated up to E '  and second-order diagrams up to E'. The summations in these 
evaluations are approximated with integrations, so we take from table 1 in  the limit 
of large N that 

= J 
N-I 

di  l / [ i ( ~ -  i ) ~ ( ~ - " ' / ~ =  JlN-'  d i ( [ l / i (N- i ) ] [1+(~ /2 )  ln[i(N-i)]]) 
I 

=(2/N)[ ln  N + ( ~ ) E  ln2 NI, ( ' 4 1 )  
a result quoted in table 2. 

n c _  = di d j  l / ( j -  i)(4-E)'2( N - j +  i)  
N- l  N 

1 + 1  

= /,"-'dl i N - ' d i [ l l i ' ( N - l ) ] [ l + ( ~ / 2 ) l n  I 11 

N - l  

= dl( 1/12)[1 + ( ~ / 2 )  In I] = ( 1 /  N ) [ N + O ( N ,  In N ) ]  ('42) 

mcll = N - 3  di I N - 2  d j  I N - l  dk I N  dl  l / ( j  - i)'(l- k)*(  N -  I +  k -j+ i) 
I 1 + 1  I f1  k+ I  

N - l ,  

= dll  d12( N - I ,  - l2)/21:1; 
I 

J I  
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m c A = [ N - l d i [ y  d j l ' d k  l / ( j - - i ) * k ( N - j + i ) =  d l  [ N-' d i  In i /  12(  N - I) 
I I +  I I I 

= d l  In( N - 1 ) / 1 2  = In N. 

The rest diagrams can be evaluated similarly and their values can be found in table 2. 
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